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Abstract. We present the non-Abelian gaugings of supermembranes for general isometries for compacti-
fications from eleven-dimensions, starting with an Abelian case as a guide. We introduce a super Killing
vector in eleven-dimensional superspace for a non-Abelian group G associated with the compact space
B for a general compactification, and couple it to a non-Abelian gauge field on the world-volume. As a
technical tool, we use teleparallel superspace with no manifest local Lorentz covariance. Interestingly, the
coupling constant is quantized for the non-Abelian group G, due to its non-trivial mapping π3(G).

PACS. 11.25.Mj, 11.25.Tq, 04.50.+h, 04.65.+e

1 Introduction

The concept of the simultaneous double-compactification
of supermembranes on three-dimensions (3d) with target
eleven-dimensions (11D) into superstrings on 2dwith target
10D, was first presented in [1]. Since this first observation,
it has been well-known that massive Type IIA supergravity
in 10D [2] can also arise from the compactification of M-
theory in 11D [3], via a Killing vector in the direction of
the compactifying 11-th coordinate [4]. This mechanism
has been elucidated in terms of component language in [4].
Similar mechanisms are expected to work also in many
other dimensional reductions [5].

At the present time, however, it is not clear how these
component results can be re-formulated in 11D super-
space [6, 7] with symmetries for the supermembrane ac-
tion [8]. For example, the original important significance
of supermembranes, such as fermionic κ-invariance [8,9], or
the target 11D superspace Bianchi identities (BIds) [6,7],
has not been clarified in component language [4]. Neither
is it clear in [4] how a theory as ‘unique’ as 11D super-
gravity [3] can accommodate the ‘free’ mass parameter m,
or how it can make itself equivalent to the conventional
theory [3], while generating massive Type IIA supergravity
in 10D [2] after compactification.

In this paper, we will clarify the significance of the ‘free’
parameter m in the context of supermembranes [8] on 11D
superspace background [7]. We first review the modification
of 11D supergravity with the modified fourth-rank field
strength by a Killing vector with the free parameter m [4]
in component language. We shall see that all the m-terms
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cancel themselves in the Bianchi identities, when the field
strength is expressed in terms of Lorentz indices. We next
show how such disappearance of m-effects is reformulated
in superspace [6,7] as well. In other words, there is no effect
by the m-dependent terms in superspace.

At first glance, this result seems discouraging, because
any effect due to the super Killing vector corresponding to
the compactification from 11D into 10D turns out to be a
‘phantom’. Interestingly, however, we have also found that
if we introduce a U(1) gauge field on the supermembrane
world-volume with minimal coupling to a super Killing
vector ξA, this surely results in a physical effect depending
on m. We have also found that such couplings necessi-
tate the existence of a Chern-Simons term. We can further
generalize this U(1) gauge group for a torus compactifi-
cation into 10D, to a more general compactification with
a more general non-Abelian isometry group. Fortunately,
the m-dependent terms do not upset the basic structure
of supermembrane action.

Accordingly, for non-Abelian groups G the super Killing
vector ξA I carries the adjoint index I=1,2,...,dim G, where
G is associated with the compact space B in the com-
pactification M11 → MD × B from 11D into any arbi-
trary space-time dimension MD with D ≡ 11−dim B [10].
Typical examples are G = SO(8) for B = S7, and G =
SO(6) × SO(3) for B = S5 × S2. The simplest choice of
G = SO(2) [4] corresponds to the torus compactification
with B = S1. The generalized Scherk-Schwarz type [11]
dimensional reduction corresponds to G = SO(11 − D)
with B = SL(11 − D, R)/SO(11 − D) [5, 12].

As a technical tool, we use a special set of 11D su-
perspace constraints which we call ‘teleparallel superspace
constraints’ [13]. This is because compactifications from
11D most naturally break local Lorentz symmetry, and
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therefore, teleparallel superspace with no manifest local
Lorentz symmetry is more suitable for such a formulation.

Our vector field on the world sheet is neither auxiliary
nor composite, but is topological, and different from the
auxiliary vector field introduced in the massive type IIA
formulation [4]. It is also distinct from the U(1) vector field
used in D-brane formulation [14]. We also expect our for-
mulation can be applied to more general extended objects
other than supermembranes, such as those in [15].

2 Modified field strengths in component

In this section, we study the effect of the Killing vector
ξm for the massive branes described in [4] on 11D super-
gravity in component language. The Killing vector ξm is
associatedwith the compactification of 11Dsupergravity [3]
down to 10D massive Type IIA supergravity [2]. We claim
that the additional m-dependent terms in a fourth-rank
field strength [4] with ξm can eventually disappear in its
Bianchi identity, when the field strength is expressed with
Lorentz indices.

The fourth-rank field strength Gmnrs [3] of the potential
Bmnr is1 [4],

Ǧmnrs ≡ 1
6 ∂[mBnrs] − 1

8 mB̃[mnB̃rs]. (2.1)

Here B̃mn ≡ ξrBrmn and Λ̃m ≡ ξnΛnm. More generally,
any tilded field or parameter implies a contraction with
ξm from the left corresponding to the ‘inner contraction’
iξ in terms of differential forms [4]. The Killing vector ξm

specifies the 11-th direction of the compactification [4],
associated with the Lie-derivatives

LξBmnr ≡ ξs∂sBmnr + 1
2

(
∂[m|ξs

)
Bs|nr]

∗= 0 , (2.2a)

Lξ gmn ≡ ξr∂rgmn + (∂(m|ξr)gr|n)
∗= 0 , (2.2b)

Lξ em
a ≡ ξn∂nem

a + (∂mξn) en
a ∗= 0 , (2.2c)

Eaξb ∗= ξcCca
b , (2.2d)

LξCab
c = ξdEdCab

c ∗= 0 , (2.2e)

where Ea ≡ ea
m∂m and Cab

c is the anholonomy coefficient
Cab

c ≡ (E[aeb]
m)em

c both with no Lorentz connection, be-
cause we are using the teleparallel formulation. The symbol
∗= stands for a relationship associated with the feature of
the Killing vector. As we shall show, our engagement of
the teleparallel formulation is compatible with the Killing
vector condition. Equation (2.2e) can easily be confirmed
by (2.2d). As far as the target 11D superspace is concerned,
there will be no physical difference between the teleparallel
formulation [13] and the conventional formulation [7], as
has been explained also in [13].

The real meaning of the m-modification becomes ap-
parent, when we rewrite the field strength Ǧabcd in terms

1 Our notation for the curved (or Lorentz) indices m,n,... (or
a,b,...) are the same as in [6]. Also our antisymmetrization is as
in [6], e.g., A[mBn] ≡ AmBn − BnAm with no 1/2 in front.

of local Lorentz indices:

Ǧabcd ≡ + 1
6 E[aBbcd] − 1

4 Č[ab|eBe|cd] + 1
8 mB̃[abB̃cd]

= Gabcd − 1
8 mB̃[abB̃cd] , (2.3a)

Gabcd ≡ + 1
6 E[aBbcd] − 1

4 C[ab|eBe|cd] , (2.3b)

where we have used the modified anholonomy coefficients

Čab
c = Cab

c + mB̃abξ
c , (2.4)

consistent with the torsion Tmn
r = −mB̃mnξr in [4]. Here

Cab
c is the original anholonomy coefficient when m = 0 [3].

The ‘disappearance’ of the m-effect can be understood in
terms of the χ-gauge transformation in [4] which we rename
as Λ gauge transformation. Explicitly,

δΛBmnr = 1
2 ∂[mΛnr] − 1

2 mΛ̃[mB̃nr] . (2.5)

This together with the other related transformations can
be expressed a s2

δΛBabc = + 1
2 E[aΛbc] − 1

2 Č[ab|dΛd|c] + 1
2 mΛ̃[aB̃bc]

= + 1
2 E[aΛbc] − 1

2 C[ab|dΛd|c]

= δΛBabc

∣∣
m=0 , (2.6a)

δΛea
m = +mΛ̃aξm , δΛem

a = −mΛ̃mξa ,

δΛgmn = −mΛ̃(mξn) ,
(2.6b)

δΛξm = 0 , δΛξa = 0 , (2.6c)

δΛǦmnrs = + 1
6 mΛ̃[mG̃nrs] ,

G̃mnr ≡ ξsǦsmnr ,
(2.6d)

δΛǦabcd = 0 . (2.6e)

Most importantly, when written in terms of Lorentz in-
dices, the field strength Ǧabcd is neutral under the Λ-
transformation. On the other hand, Ǧmnrs is not invariant,
as (2.6d) shows, in agreementwith [4]. The reason is that the
elfbein transformation δΛea

m cancels exactly the contribu-
tion of δΛǦmnrs. Relevantly, all the m-dependent terms in
(2.6a) completely cancel amongst themselves, making the
whole expression exactly the same as in the m = 0 case.

Relevantly, in component language3, C, G, Č and Ǧ
satisfy the following BIds

1
2 E[aCbc]

d − 1
2 C[ab|eCe|c]d ≡ 0 , (2.7a)

1
24 E[aGbcde] − 1

12 C[ab|fGf |cde] ≡ 0 , (2.7b)
1
2 E[aČbc]

d − 1
2 Č[ab|eČe|c]d + mG̃abcξ

d ≡ 0 , (2.7c)
1
24 E[aǦbcde] − 1

12 Č[ab|f Ǧf |cde] ≡ 0 . (2.7d)

2 The check-symbol on G̃abc in (2.6d) is not needed, because
ξsG̃smnr ≡ ξsGsmnr.

3 We note that in the earlier version of this paper, there was
a redundant G̃B̃ -term in the Ǧ -BId which should not have
been there.
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Equation (2.7c) and (2.7d) are equivalent to (2.7a) and
(2.7b), reflecting again the disappearance of the m-terms
in (2.6a). To put it differently, (2.7c) and (2.7d) follow
from (2.7a) and (2.7b). In this process, we require that
G̃abc satisfies its ‘own’ BId4

1
6 E[aG̃bcd] − 1

4 C[ab|eG̃e|cd] ≡ 0 . (2.8)

Relevantly, we can show that

G̃abc ≡ ξdGdabc = −
(

1
2 E[aB̃bc] − 1

2 Č[ab|dB̃d|c]
)

. (2.9)

The first equality is the original definition, while the second
one can be confirmed by the use of (2.3b). The overall
negative sign is due to our definition of the tilded fields.

As has been mentioned before, (2.2d) has no Lorentz
connection. The consistency of our teleparallelism is justi-
fied by the consistency of the commutator of the Ea’s on
ξc. In fact, we get

[Ea, Eb]ξc = E[a(Eb]ξ
c) = Cab

dEdξ
c + ξdEdCab

c , (2.10)

where from the middle to the r.h.s., we have used (2.2d)
and the BI (2.7a). As desired, the first term on the r.h.s. co-
incides with the l.h.s., while the last term vanishes, thanks
to (2.2e).

We have thus seen that all the m-dependent terms in
the Ǧabcd-BId are cancelled, when this field strength is ex-
pressed with Lorentz indices. This means that all of these
m-dependent terms do not really gener ate any new physi-
cal effect within 11D supergravity. In the next section, this
aspect will be used as the guiding principle in the super-
space reformulation of our component results [6, 7]. This
result of no ‘physical’ effect of the Killing vector [4] in 11D
supergravity [3] is not surprising. This is because 11D su-
pergravity [3] is so tight that there is no room for such an
additional free parameter m. The necessity of the telepar-
allel formulation will be elucidated more in the following
sections, when the Killing vector is coupled to supermem-
brane.

3 Modified BIds in superspace

We saw previously that all the m-modified terms in the
Ǧ-BId were completely absorbed into field redefinitions
within 11D. We showed this in terms of the teleparallel
formulation. This aspect will now be reformulated in su-
perspace [6, 7] in terms of the so-called teleparallel super-
space developed in [13]. Let us start with the unmodified
teleparallel superspace with the super anholonomy coeffi-
cients C- and the superfield strength G defined by [13]5

CAB
C ≡ (E[AEB)

M )EM
C , (3.1a)

GABCD ≡ 1
6 E[ABBCD) − 1

4 C[AB|EBE|CD) , (3.1b)

4 The difference between Čab
e and Cab

e does not matter here,
due to the identity ξeG̃ecd ≡ 0.

5 As in [6], we use the indices A, B, ... for local Lorentz co-
ordinates in superspace, while M, N, ... for curved ones.

satisfying their BIds

1
2 E[ACBC)

D − 1
2 C[AB|ECE|C)

D ≡ 0 , (3.1a)
1
24 E[AGBCDE) − 1

12 C[AB|F GF |CDE) ≡ 0 , (3.1b)

where EA ≡ EA
M∂M [6]. The superspace constraints with

engineering dimensions d ≤ 1 relevant at m = 0 are [13]

Cαβ
c = +i(γc)αβ , Gαβcd = + 1

2 (γcd)αβ , (3.2a)

Cαβ
γ = + 1

4 (γde)(αγCβ)
de , Cα

bc = −Cα
cb , (3.2b)

Cαb
γ = + i

144 (γb
defgGdefg + 8γdefGbdef )α

γ

− 1
8 (γcd)α

γ(2Cbcd − Ccdb) . (3.2c)

All other independent components at d ≤ 1 such as Gαbcd

and Cαβ
γ are all zero.

The super Killing vector ξM in superspace for the
Abelian gauging corresponds to the torus compactification
M11 → M10 × S1, specified by the conditions

LξBMNP ≡ ξQ∂QBMNP + 1
2 (∂[M |ξQ)BQ|NP )

∗= 0 ,
(3.3a)

Lξ EM
A ≡ ξN∂NEM

A + (∂MξN )EN
A ∗= 0 , (3.3b)

Lξξ
M ∗= 0 , (3.3c)

EAξB ∗= ξCCCA
B , (3.3d)

LξCAB
C = ξDEDCAB

C ∗= 0 . (3.3e)

These are the teleparallel superspace generalizations of
the component case (2.2). Equation (3.3d) is nothing but
the rewriting of (3.3b). As in the component case (2.10),
we can confirm the consistency of (3.3d) by considering
the commutator [EA, EB}ξC along with (3.3e), where the
details of computations are skipped here.

The BIds for the m-modified system with the Abelian
super Killing vector are6

1
2 E[AČBC)

D − 1
2 Č[AB|EČE|C)

D + mG̃ABCξD ≡ 0 ,
(3.4a)

1
24 E[AǦBCDE) − 1

12 Č[AB|F ǦF |CDE) ≡ 0 ,
(3.4b)

1
6 E[AG̃BCD) − 1

4 Č[AB|DG̃D|CD) ≡ 0 ,
(3.4c)

where the modified superfield strengths ČAB
C , ǦABCD

and G̃ABC are defined by7

ČAB
C ≡ CAB

C + mB̃AB ξC , (3.5a)

ǦABCD ≡ 1
6 E[ABBCD) − 1

4 Č[AB|EBE|CD)

6 In an earlier version of this paper, there was a redundant
mG̃B̃ -term in the Ǧ -BId that should not be there.

7 The difference between ČAB
D and CAB

D does not matter
in (3.5c), due to the identity ξDB̃DC ≡ 0. The overall negative
sign in (3.5c) is caused by our universal definition of the tilded
superfields, causing a flipping sign.
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+ 1
8 mB̃[ABB̃CD)

= GABCD − 1
8 mB̃[ABB̃CD) , (3.5b)

G̃ABC ≡ −
[

1
2 E[AB̃BC) − 1

2 Č[AB|DB̃D|C)

]
. (3.5c)

Any tilded superfield symbolizes the iξ-operation defined
by X̃A1...An ≡ ξBXBA1...An . The important point here is
that even though the modified BIds (3.4a) and (3.4b) look
different from the original ones (3.1), the former is just the
rewrite of the latter. In other words, we can ‘derive’ (3.4a)
and (3.4b) from (3.1), under the definition (3.5). In this
sense, the m-modified system is equivalent to the original
system (3.1), and therefore the same set of constraints (3.2)
satisfies (3.4). This also solves the puzzle of the admissi-
bility of the ‘free’ mass parameter [4] in 11D supergravity.
Conventional wisdom is that 11D supergravity is ‘unique’
in the sense that it excludes such free parameters [16]. For
this reason, we can use exactly the same set of constraints
(3.2) for our purpose from now on.

We now generalize this Abelian super Killing vector to
the non-Abelian case that corresponds to the more gen-
eral compactification M11 → MD × B. According to past
experiences in the gauging of σ-models [17], we know that
the Lie derivative of the Killing vector no longer vanishes,
but is proportional to the structure constant. Such a super
Killing vector is specified by the conditions

LξI BMNP ≡ ξQ I∂QBMNP + 1
2

(
∂[M |ξQ I

)
BQ|NP )

∗= 0 , (3.6a)

LξI EM
A ≡ ξN I∂NEM

A +
(
∂MξN I

)
EN

A

∗= 0 , (3.6b)

LξI ξM J ≡ ξP I∂P ξM J − ξP J∂P ξM I

∗= m−1f IJKξM K , (3.6c)

EAξB I ∗= ξC ICCA
B , (3.6d)

LξI CAB
C = ξD IEDCAB

C ∗= 0 . (3.6e)

These are the non-Abelian generalizations of (3.3).
In working out the non-Abelian generalization of the

modified BIds (3.4). We encounter an obstruction for the Č-
BId.This is because anm2-termwith the factor ξE IB̃EC

J ≡
ξE IξF JBFEC �= 0, no longer vanishes in those BIds due
to the additional adjoint indices I, J, which were absent in
the Abelian case.

Even though we have not yet succeeded in solving this
problem, we can still formulate the case of the non -Abelian
minimal couplings in supermembrane, due to the unique-
ness of the 11D superspace and the unmodified BIds. We do
this in the next section. All we need for κ-invariance are re-
lationships like (3.6) with unmodified superfield strengths.

4 Supermembrane with non-Abelian gauging

In the compactification of M11 → M10 × S1 with Abelian
gauging, we have seen in 11D superspace that all the new

effects due to the m-dependent terms cancel amongst them-
selves. By the same token, the nontrivial-looking modified
BIds turn out to be completely equivalent to conventional
ones. This situation is maintained for the more general com-
pactifications M11 → MD × B. An intuitive explanation
is that even though the original 11D are compactified, the
original superfield equations are still satisfied, and there-
fore, the original BIds are not modified after all.

However, the effect of the super Killing vectors cor-
responding to the compactifications will definitely have
non-trivial effects on the supermembrane action in 3d [8].
This is analogous to the gauging effect of any σ-models
on G/H with minimal couplings for the gauge subgroup
H of G [17]. In particular, such minimal coupling can be
introduced by the world-volume gauge field Ai

I .
With these preliminaries, the total supermembrane ac-

tion I on 3d world-volume is

I =
∫

d3σ
[
+ 1

2

√−ggijηabΠi
aΠj

b − 1
2

√−g

− 1
3 εijkΠi

CΠj
BΠk

ABABC (4.1)

+ 1
2 mεijk

(
Fij

IAk
I − 1

3 f IJKAi
IAj

JAk
K

)]
.

We use the indices i, j, ... = 0, 1, 2 for the curved coordinates
(σi) of 3d world-volume, while (ZM ) = (Xm, θµ) for the
11D superspace coordinates ggrs. The EA

M is the vielbein
in 11D superspace, and the pull-back Πi

A with the non-
Abelian minimal coupling is

Πi
A ≡ (

∂iZ
M − mAi

I ξM I
)
EM

A

≡ Π
(0)A
i − mAi

I ξA I , (4.2)

where m is the coupling constant. The original superme-
mbrane action [8] can be recovered in the limit m → 0.
The Ai

I = Ai
I(σ) is the non-Abelian gauge field on the

world-volume with its field strength

Fij
I ≡ ∂iAj

I − ∂jAi
I + f IJKAi

JAj
K , (4.3)

with the structure constant f IJK of the gauge group G.
Needless to say, the Abelian case is also obtained as a
special case by putting the structure constant to zero, with
all related adjoint indices deleted.

As for the 11D superspace background, we adopt the
teleparallel superspace [13], for the same reason as in the
Abelian case. One intuitive reasoning is that it is more nat-
ural to use superspace constraints which do not have man-
ifest local Lorentz covariance. One technical reason is that,
as we will see, our action loses the fermionic κ-invariance,
when there is a Lorentz connection on the background
superspace. For the reason mentioned previously, we can
use only the un-modified superfield strength GABCD and
CAB

C in teleparallel superspace formulation, instead of the
m-modified ones.

Interestingly, since the π3-homotopy mapping of a non-
Abelian group is generally non-trivial, the constant m
in front of the Chern-Simons term is quantized. Specifi-
cally, π3(G) = Z for G = SO(n) (n �= 4), U(n) (n ≥
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2), SU(n) (n ≥ 2), Sp(n) (n ≥ 1), G2, F4, E6, E7, or
E8, while π3(SO(4)) = Z ⊕ Z. For Abelian groups, such
a mapping is trivial: π3(SO(2)) = π3(U(1)) = 0. For the
group with π3(G) = Z, the quantization condition is [18]

m =
n

8π
(n = ±1,±2, . . .) . (4.4)

The local non-Abelian invariance of our action is given in
terms of the σ-dependent transformation parameter αI as

δαAi
I = +∂iα

I + f IJKAi
JαK ≡ Diα

I , (4.5a)

δαZM = +m αI ξMI , (4.5b)

δαξMI = +mαJ ξNJ∂NξMI ,

δαξA ∗= − f IJKαJξA K ,
(4.5c)

δαEM
A ∗= − m αI (∂MξNI)EN

A ,

δαEA
M ∗= + m αI EAξMI ,

(4.5d)

δαΠi
M = +m αI Πi

N∂NξMI ,

δαΠi
A = 0 ,

(4.5e)

δαFij = 0 , (4.5f)

δαBMNP
∗= − 1

2 mαI(∂[M |ξQI)BQ|NP ) ,

δαBABC = 0 .
(4.5g)

The Abelian case is easily obtained by the truncation of
the adjoint indices and the structure constant. All the
(super)fields carrying the curved 11D superspace indices
transform non-trivially, except for Ai

I . The local invari-
ance δαI = 0 under G is easily confirmed, because of the
invariances of Πi

A and Fij .
Our action is also invariant under the Λ-gauge trans-

formation

δΛBABC = + 1
2 E[AΛBC) − 1

2 C[AB|DΛD|C) ,

ξA IEAΛBC
∗= 0 ,

(4.6a)

δΛEA
M = +mΛ̃A

IξM I ,

δΛEM
A = −mΛ̃M

IξA I ,
(4.6b)

δΛAi
I = −Πi

AΛ̃A
I ≡ −Λ̃i

I ,

Λ̃A
I ≡ ξB IΛBA ,

(4.6c)

δΛΠi
A = 0 , δΛgij = 0 , δΛZM = 0 ,

δΛξA I = 0 , δΛξM I = 0 .
(4.6d)

We have δΛΠi
A = 0, justifying the minimal coupling in

Πi
A. We easily see that the crucial Fij-linear terms in δΛI

are cancelled by the variation of the Chern-Simons term.
We now study the fermionic κ-invariance [8, 9]. Our

action I is invariant under

δκEα ≡ (δκZM )EM
α = (I + Γ )αβκβ

≡ [(I + Γ )κ]α , (4.7a)

δκEa ≡ (δκZM )EM
a = 0 ,

Γ ≡ + i
6
√−g

εijkΠi
aΠj

bΠk
c γabc ,

(4.7b)

δκAi
I = Πi

AξB I(δκEC)BCBA ≡ Πi
AξB IΞBA

≡ Πi
AΞ̃A

I ,

ΞAB ≡ (δκEC)BCAB ,

(4.7c)

δκEA
M = (δκEB)EBEA

M − mΞ̃A
IξM I ,

δκEM
A = (δκEB)EBEM

A + mΞ̃M
IξA I ,

(4.7d)

δκξA I = (δκEC)ξB ICBC
A , (4.7e)

δκΠi
A = ∂i(δκEA) + (δκEC)Πi

BCBC
A , (4.7f)

δκBABC = (δκED)EDBABC . (4.7g)

As stated in [13], (4.7f) takes a simpler form than in the
Lorentz covariant formulation [7]. Needless to say, Πi

A in
this equation contains the m-term, but still no m-explicit
term arises in (4.7f). As can readily be checked, the m-
dependent terms in (4.7d) and δκAi are the special cases
of the Λ-transformation rules (4.6b) and (4.6c) with ΛAB ≡
−ΞAB ≡ −(δkEC)BCAB . Note, however, that δκBABC has
no such a corresponding term. The effect of having the Xi -
terms only for δκEM

A, δκEA
M and δκAi is to cancel the

unwanted terms arising in δκI otherwise.
The κ-invariance of our action can be confirmed in a way

parallel to the original supermembrane case [8], with subtle
differences arising due to the m-dependence and the non-
Abelian feature of super Killing vectors. The algebraic gij-
field equation takes exactly the same form as the embedding
condition in the conventional case [8]:

gij
.= Πi

aΠja , (4.8)

where .= is for a field equation. Needless to say, our pull-
backs contain also the m-dependent terms. Other relation-
ships involving Γ are exactly the same as the conventional
case [8] or the Abelian case:

Γ 2 .= +I , εijkγjkΓ
.= −2i

√−g γi ,

γi ≡ +Πi
aγa , γij ≡ Πi

aΠj
bγab .

(4.9)

As in the Abelian gauging, the confirmation δκI = 0
also needs important relationships, such as

∂[iΠj]
A = Πi

BΠj
CCCB

A − mFij
IξA I , (4.10a)

LξBABC = ξD IEDBABC
∗= 0 . (4.10b)

The latter is confirmed by (3.6a), while (4.10a) needs the re-
lationship

mξB IξC JCCB
A ∗= f IJKξA K , (4.11)

derived from (3.6c). The Abelian gauging can be obtained
by truncating the adjoint indices and the structure con-
stants.
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One of the most crucial cancellation in the invariance
δκI = 0 arises out of the Wess-Zumino-Witten term:
(i) From the partial integration of ∂i in

εijk
[
∂i

(
δκEC

)]
Πj

BΠk
ABABC

hitting Πj
B producing a term with mFij .

(ii) From the variation δκAi in the Chern-Simons term,
yielding a term with mεijkΞ̃iFjk. Both of these have the
same structure and therefore cancel each other. This can-
cellation also justifies the necessity of a constant m in the
Chern-Simons term, which also serves as the minimal cou-
pling constant at the same time.

As we have seen, it is not only the Λ-invariance, but also
the κ-invariance that necessitates the Chern-Simons term.
There are other reasons that require the Chern-Simons
term. For example, if there were no Chern-Simons term,
the minimal couplings of Ai to the superspace coordinates
ZM or gij would result in additional constraints, spoil-
ing the original physical degrees of freedom of these fields.
Thanks to our Chern-Simons term, such constraints will
not arise, but all the minimal coupling terms contribute
only as the source term J i to the vector field equation as
εijkFjk

I .= J i I . This also makes the whole system nontriv-
ial, because our newly-introduced gauge field couples to the
conventional fields ZM in a nontrivial way, still respecting
the original degrees of freedom.

We have been using teleparallel superspace as the con-
sistent background for our supermembrane modified by
the super Killing vector ξA. The most important techni-
cal reason is the problem with conventional constraints
arising from the κ-invariance of our action that should
be addressed here. Suppose we adopt Lorentz covariant
formulation, replacing (3.3d) and (4.10a) now by

∇AξB I ∗= ξC ITCA
B , (4.12a)

∇[iΠj]
A = Πi

BΠj
CTCB

A − mFij
IξA I

+ mA[i
IΠj]

CξB IωBC
A , (4.12b)

where ∇i is a Lorentz covariant derivative acting like
∇iXA ≡ ∂iXA +Πi

AωAB
CXC . Note that the last term in

(4.12b) arises fromthedifferencebetweenΠ
(0)B
[i| ωB

ACΠ|j]C
and Π[i|B ωB

ACΠ|j]C . Now the problem is that when we
vary our action under δκ, the Wess-Zumino-Witten term
yields an additional term proportional to

mεijkΠi
CAjΠk

DξF ωFD
B

(
δκEE

)
BEBC

that has no other counter-terms to cancel. On the other
hand, teleparallel superspace has no such an ω-dependent
term generated, thanks to the absence of manifest local
Lorentz covariance from the outset.

As far as the target 11D superspace is concerned, there is
no physical difference between teleparallel superspace [13]
and the conventional superspace [7]. However, when it
comes to the physics of supermembranes on 3d, we see such
a great difference due to the valid fermionic κ-invariance
of the action. This seems to tell us that only teleparallel
superspace [13] with no manifest local Lorentz covariance

is the most suitable and consistent framework with the su-
per Killing vector introduced for the compactification from
11D into 10D. Since the supermembrane is an important
‘probe’ of superspace background, our result indicates the
importance of teleparallel superspace for the compactifi-
cations of 11D or M-theory itself.

Before concluding this section, we list here all the field
equations of our fields gij , ZM and Ai

I in 3d:

gij
.= Πi

aΠia , (4.8)

δA
a∂i

(√−g Πi
a

) − √−g Πi
BCBA

dΠi
d (4.13a)

.= + 1
3 εIjkΠi

DΠj
CΠk

BGBCDA

− mεijkFij
IξB IΠk

CBCBA ,

εijk
(
Fjk

I − B̃jk

)
.=

√−g Πiaξa
I . (4.13b)

Compared with the original supermembrane case [8], the
A-field equation is extra, while the super Killing vector
containing terms represent the new effects. All other terms
are formally the same as in the m = 0 case.

The mutual consistency between (4.13a) and (4.13b)
can be confirmed by taking the divergence of the latter. In
fact, we get

0 ?= Di

(
εijkFjk

I − √−gΠiaξa
I + εijkξA IΠj

CΠk
BBBCA

)
= − [

∂i

(√−g Πia
)]

ξa
I − √−g ΠiaΠi

BξE ICEB
a

− mεijkξA IFij
JξB JΠk

BBBCA

+ 1
3 εijkξA IΠj

CΠk
BΠi

DGDBCA

.= 0 . (4.14)

This vanishes, because the penultimate side is nothing but
the multiplication of the ZM -field equation (4.13a) by ξA I ,
where use has been made of the relation (4.10b).

5 Concluding remarks

In this paper, we have performed the non-Abelian gaug-
ing of the supermembrane, by introducing a vector field
on its world-volume. We have confirmed that our action
has three invariances, the fermionic κ-symmetry, local non-
Abelian gauge symmetry, and composite Λ-symmetry for
the antisymmetric tensor BABC . We have shown that the
Λ-invariance requires the minimal couplings to the super
Killing vector ξA I , while both Λ- and κ-invariances ne-
cessitate the Chern-Simons term, which makes our system
nontrivial, but nevertheless consistent.

Since the π3-mapping of a non-Abelian gauge group
G associated with the compact space B is generally non-
trivial, the m-coefficient of our Chern-Simons term is quan-
tized. This situation is different from an Abelian gauging
where π3(U(1)) = 0. Even though the precise significance
of this quantization is yet unclear, we stress that it is our
formulation that reveals such a quantization in terms of
supermembrane action principle in 3d.
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TheAbelian gauging requires a vector field on theworld-
volume, which is similar to the Abelian vector field used
in D-branes [14]. Even though we do not yet know any
direct relationships, it is quite natural to have the D-brane
generalization of our formulation.

Our results in this paper bring out two important as-
pects of M-theory. First, the introduction of a super Killing
vector ξA I with the parameter m seems to induce no new
physical effects on the target 11D superspace itself, because
all the field strengths and BIds are entirely reduced to the
original case with m = 0 in 11D [7]. This is also consistent
with our past experience, i.e., any näıve modification of
11D supergravity [3] is bound to fail, due to the ‘unique-
ness’ of 11D supergravity [16], unless it is related to certain
M-theory higher-order correction terms. Second, most im-
portantly, the existence of the super Killing vector ξA I

induces nontrivial physical effects on the supermembrane
action in 3d, despite no seeming physical effects on the 11D
target superspace. The quantization of the Chern-Simons
term also supports the non-trivial feature of the system on
the world-volume. To put it differently, while 11D super-
gravity is ‘unique’ [3, 7], there are still some ambiguities
for supermembrane physics in the 3d world-volume. Our
results have uncovered such nontrivial unknown aspects
of double-compactifications of M-theory. Additionally, our
formulation may well be applied to more general extended
objects [15] other than supermembranes. In fact, similar
Chern-Simons terms with quantizations for bosonic case for
odd p-branes have been discussed in [15] based on string/5-
brane duality.

To our knowledge, our formulation is the first that intro-
duces non-Abelian minimal couplings into the supermem-
brane action in 11D with a Chern-Simons term. These non-
trivial couplings make double-compactifications [1] more
interesting, because without a supermembrane action on
3d, all the effects of t he super Killing vector ξA I simply
disappeared within the 11D target superspace. It is these
non-Abelian couplings that make the new effects of ξA I

nontrivial, providing interactions with physical fields in
the supermembrane action. Additionally, our non-Abelian
gauge field is neither auxiliary nor composite as in past
references [4], but is ‘topological’ with a genuine Chern-
Simons term. Since the supermembrane [8] is an important
‘probe’ for 11D backgrounds, our result indicates impor-
tant effects of super Killing vector for the compactifications
on the supermembrane world-volume physics.

Since conventional Lorentz covariant superspace lacks
κ-invariance in the action, and moreover, compactifications
such as the one from 11D into 10D necessarily break local
Lorentz symmetry, teleparallel superspace can serve as a
consistent background for supermembranes with the non-
Abelian super Killing vector. Supermembrane physics, as
an important probe for 11D background, has revealed the
necessity of teleparallel superspace in 11D or M-theory. In
this sense, teleparallel superspace [13] is not just ‘a technical
tool’, but a consistent background, when considering the
double-compactification [1] of supermembranes [8].

The recent developments in 3D supergravity and super-
symmetry [19] may well be closely related to the result of

this paper. It is hoped that the techniques developed in this
paper will play an important role, when considering general
compactifications of M-theory, such as compactifications
into the superstring theory in 10D or lower-dimensions.
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